
A Methodology for Virtual
Hardware/Software Integration

E\ 6HUJH /HHI

0HQWRU *UDSKLFV &RUSRUDWLRQ

Abstract
Majority of the systems being designed today are embedded systems that consist of standard and custom hardware
as well as standard and custom software. As the EDA vendors focused on tools and methodologies for automation of
hardware design, the effects of the software as a component of the system have been largely ignored. While it is
possible to execute microscopic amounts of software on the simulated hardware, the performance and usability of
current generation of tools is grossly inadequate for true hardware/software co-verification. This paper examines
common analyzes hardware/software co-verification problem, proposes a solution and explores methodology
implications.

Introduction
Embedded systems are task-specific computing devices that consist of standard and custom hardware and software.
Standard hardware is typically made up of a commercial microprocessor or microcontroller, memory and a small
number of standard parts. Custom hardware is implemented as Application Specific Integrated Circuits. Standard
software frequently consists of a Real Time Operating System (RTOS), and configurable device drivers. Custom
software is the embedded application.

Figure 1. Structure of a typical Embedded System

The complexity of these systems varies widely from low to high end depending on the targeted market segment and
product goals. Embedded systems can be found in almost everything that we encounter in our daily lives, such as
communication systems ranging from the telephone, to the large switching centers, automobiles, consumer
electronics, avionics, etc. In fact some of today's luxury cars contain more than 40 independent embedded systems,
controlling such things as the suspension, engine, anti-lock brakes and user consoles [1].

System type CPU Memory ASIC RTOS Embedded Application
Basic Consumer
Electronics Device

Intel 8051 256KB none Simple Scheduler
10000 lines of assembly
code

Automotive Control
Sub-System

Motorola 68300512KB - 1MB 20K gate FPGA
Custom
microkernel

10000 to 50000 lines of
assembly and C code

Telecom Switching
Module

Multiple
Pentiums and
DSP processors

2MB+
Multiple ASICs
at 30K to 100K
gates each

Commercial
RTOS

upto 2M lines of C and
C++ code

Table 1. Range of embedded system complexity

Embedded System Types
Embedded systems can be software dominant. That is, standard or previously designed hardware is
utilized while the software makes up all or most of the original content that is being developed in the
course of a design project. These, typically cost sensitive systems, are quite common in the consumer
electronics products. Software dominant systems do not present a hardware/software co-verification
challenge: system can be validated by executing software on the existing hardware.

Hardware dominant systems are usually found in the applications where performance is a critical
success factor. In these systems, much of the design team's efforts are focused on implementing the
functionality in hardware (i.e. boards, ASICs). Hardware dominant systems are difficult to validate
with software during the design cycle because the actual hardware does not yet exists and the
simulation tools are too slow for the job.

Hardware/Software Co-simulation is a much needed capability for designers of the systems with
significant original hardware content. The need for co-verification is frequently proportional to the size
of the original hardware being designed.

Hardware/Software Integration
The time spent on the typical electronic system development project is typically partitioned into three
basic phases: System, Hardware/Software Design, Integration and Test. In interviews with 18
customers, a striking consistency was observed in the relative duration of each phase: they were all
about equal in duration, each representing a third of the length of the project.

Figure 2. Embedded system design process overview

• System phase -- during this phase the entity being designed is viewed as an overall system,
rather than as distinct hardware and software components. This phase, typically completed by
system engineers, results in specifications for how the system will behave. Other deliverables
include the architecture and functional specification of the system. Additionally, functional
requirements and budgets for both hardware and software components of the system are
created. These include constraining costs, size, performance, and physical attributes. At the
conclusion of this phase the system is partitioned into software and hardware sub-systems.

• Hardware/Software Design phase -- during this phase separate organizations (except in the
case of small projects) address their respective problems. The Hardware and Software design
and implementation efforts typically start at the same time and end at the same time. The
work, however, proceeds independently between start and end. Bridging the gap between the
two design teams are the firmware engineers. Firmware engineers normally develop low level
software which interfaces to the hardware, thus providing a software foundation for the higher
level software. The higher level, or application, software is where the unique functionality of
the product is usually implemented (e.g., call-forwarding, engine control decisions.)

• Integration and Test phase -- In theory, Integration and Test is the final series of checks
prior to the shipment of the system. In practice, it is the first time that the "completed"
hardware and independently developed software come together as a system. At this time
numerous issues surface, namely: the effects of misinterpretations of interface definition, out-
of-date specifications, poorly communicated changes, and ineffective performance modeling,
etc. Consequently, one third or more of the total development time is spent in this phase.

Faced with cost and schedule deadlines, developers are forced to redesign and/or lower product
objectives. Given the long fabrication lead times and costs associated with redesigning ASICs, the
rework is frequently performed in software, which is not always the best solution for the end product.
Integration and Test becomes Redesign and Re-implementation, and takes about the same amount of
time to complete as the original design and implementation.

Software change costs also tend to be less visible than the cost of an ASIC turn and so the eventual
product may be compromised. Also in some cases, the first product release will not contain all of the
intended software functionality because it has not been possible to start the integration effort earlier in
the design. Two things are necessary before virtual integration and test can be accomplished. The first
is the ability to simulate the hardware at speeds sufficient to make software execution a reality. In most
cases, this means that the hardware simulation performance must be increased by a factor of at least
1000 over current execution speeds. The second is the need to bring the debug and development
environments of the hardware and software closer together. No software engineer is going to be happy
looking at waveforms when his development occurred in a high level language

Driving Forces
There are three primary driving forces affecting the market for hardware-software development tools: need to reduce
time-to-market, increased software content, and increased design complexity. These are discussed below.

Need to Reduce Time-to-Market
There is a common belief among the electronic systems designers that early detection of design errors will
dramatically reduce the amount of redesign/rework needed during Integration and Test. It has also been
observed that the cost of testing during the development is small relative to the cost of rework in latter
stages in the process. It seems to be generally true that investing energy in the front-end activities reduces
downstream costs and results in a better overall product. This approach has worked in other instances, and
is one of the foundations of the quality movement (do it right the first time, correct by construction, etc.)

Developers and management both view reducing the length of the Integration and Test phase as the most
immediate way to achieve their improved time-to-market objectives. Methodology changes during
Design/Implementation phase are widely seen as the most likely source for overall time-to-market
improvements.

Increased Software Content in Electronic Systems
As the microprocessors and microcontrollers have become an integral part of embedded designs, the
percentage of electronic manufacturers' R&D budgets allocated to software engineering has increased
radically. It is estimated that the ratio of hardware to software engineers at most companies has reversed
over the past 11 years, such that there are now about 2-3 software engineers for every hardware engineer.
That means hardware is decreasingly the dominant factor in the time-to-market equation.

Design Complexity Renders Current Techniques Impractical
Hardware verification has been reasonably addressed by the tools available today. Since typical hardware
verification calls for micro to millisecond simulation time frames, the necessary performance level matches
up well with today's simulation technology. Current generation of simulation tools is approximately 7
orders of magnitude slower than real time, allowing only small portions of real-time activities to be
simulated.

Embedded software requires a different level of performance. Verification of functionality of embedded
software frequently calls for execution of seconds to minutes of real time. This means that software
developers would have to wait up to 14 days to execute 1 second of real time at gate level simulation
speeds.

Between hardware and software components of the system, the firmware is inserted. The firmware is
typically made up of device drivers, kernels, diagnostics and boot code. The performance requirements for
verification fall somewhere between the two extremes described above. It is clear, however, that current
tools are about three orders of magnitude too slow for adequate firmware verification.

It is because of this gap between the performance needed and the performance currently available that the
Hardware/Software Co-simulation market has not yet evolved.

Hardware/Software Co-simulation Tool
Based on a close examination of wide range of methodologies used in embedded system design, it appears that a
right Hardware/Software Co-simulation tool could have a profound impact on a variety of critical success factors.
Such tool would have to provide an infrastructure for virtual integration by supporting a broad range of modeling
techniques. Additionally, dramatic performance gains over traditional hardware simulation tools would have to be
delivered.

Observations
Numerous organizations have attempted to execute embedded software on simulated hardware, however,
few have achieved satisfactory results. While it is possible to achieve a full system simulation, the resulting
performance is usually grossly unsatisfactory for meaningful validation of hardware/software interactions.
The presence of a microprocessor in the simulation session results in production of huge amounts of
simulation events required to service interactions between it and the memory subsystem. This typically
leads to performance levels of below 10 instructions/second.

When analyzing the operation of embedded systems, one can readily observe that most of the time is
consumed by the CPU operation. CPU retrieves instructions from memory and manipulates contents of
registers and memory locations. In most applications, the CPU spends upwards of 90% of its time on
internal operations as interactions with external hardware are highly infrequent. It is not uncommon for the
CPU to process 200 instructions before needing to exchange data or control information with external
hardware. That means the external hardware is effectively idle most of the time.

If, on the other hand, one considers a simulation session that attempts to model an embedded system, a very
different observation can be made about time consumption. The load on event-driven hardware simulation
tools can be measured in terms of serviced events. When simulating an embedded system, we note that the
majority of events produced and serviced by the simulator is directly related to the interaction between the
CPU and the memory subsystem. Typically, over 90% of the time is spent on servicing events that perform
CPU instruction fetches, reads, and writes to memory.

In other words, the precious simulation time is largely wasted on repetitive re-simulation of fundamentally
the same operation. Thus, one can observe that if CPU to/from memory interactions could be serviced via
higher performance methods, significant savings could be achieved in the simulation session. This would,
in turn, enable the simulation tools to focus most of their energies on simulation of all-important
interactions between CPU and external hardware (including standard parts and ASICs).

High Level Overview
Today, the hardware designer has a hardware simulator based on VHDL or Verilog modeling language,
that can emulate the behavior of a given target design. The design is entered in a hardware description
language, or through a schematic entry tool. The design consists of a set of component models and their
connectivity. Often, the microprocessor or controller is modeled by using what is called a bus functional
model. The bus functional model does not model the complete behavior of the microprocessor, only the
different bus cycles that the processor can execute. The model is controlled by a script that directs it to
drive a given set of bus cycles into the design enabling the hardware designer to construct a test that would,
for example, write to and then read from each of the memory components in the design.

To execute software on a simulated design, the hardware designer would need a fully functional model of
the processor (a complete behavior model). However, writing a program that completely emulates the
behavior of a complex processor (such as Pentium) is an extremely complex task. To obtain a full
functional model of a processor, a device called a hardware modeler is often used. A hardware modeler is a
machine that contains much of the circuitry of a semiconductor tester and is interfaced to a hardware
simulator. The hardware simulator passes to the hardware modeler the values on the input pins of the
processor, the hardware modeler then drives these values onto the input pins of the actual chip plugged into
a socket on the hardware modeler. The hardware modeler samples the output pins of the actual processor
and returns these values to the hardware simulator. Modeling the processor in this manner usually results in
speeds of 1 to 10 instructions per second on the simulated design. This method is commonly used in today's
Hardware/Software Co-simulation efforts.

The software designer utilizes a compiler and a debugger on a general-purpose computer for software
design and algorithm development. Often, an instruction set simulator will be used for running assembly
and machine code and for gross estimation of software performance. These instruction set simulators often
have facilities for handling I/O data streams to simulate to a limited degree the external hardware of the
target design. Instruction set simulators run at speeds of ten thousand to several hundred thousand
instructions per second, based on their level of detail and the performance of the host computer that they
are being run on [2].

The hardware simulator and the instruction set simulator appear to provide an interesting opportunity for
integration. A proposed architecture for a Hardware/Software Co-simulation tool is shown below.

Figure 3. Proposed architecture for a Hardware/Software Cosimulation system.

The Co-simulation Manager coordinates the execution of embedded software on the Instruction Set Model
with control of a Bus Interface Model instanciated in a traditional hardware simulator. The Memory
Manager encapsulates a coherent view of the address space, contents of which are served on demand to all
other modules in the environment. The Configuration Manager allows the user configure the environment
for execution and to fine-tune run-time optimization and synchronization mechanisms.

Performance Improvement Opportunities
Performance is a critical factor for any potential solution to this problem. Today's simulation tools are
grossly inadequate in this area. A simulation session that executes a power-up sequence for a mobile phone
(about 3 seconds of real time) currently consumes 18 days of computer time. Several orders of magnitude
of performance improvement need to be delivered in order for a Hardware/Software Co-simulation tool to
have reasonable utility. That is, the 18 day run should be brought into the range of minutes of computer
time.

In this section we examine how the performance improvements on software execution and hardware
simulation sides of the environment can effect the overall throughput. The unaccelerated method for
execution of software on simulated hardware is to load the object code into an array declared in an HDL
(Hardware Description Language) module and to allow the models (including the model of the CPU) to
execute on their own, fully simulating all the I/O activities. Usually the system is modeled at the Register
Transfer Level (RTL) of abstraction and the resulting performance is assumed here to be the base or
reference performance level (1X).

Software Execution
The techniques described below are distinct in the way they represent the design components and
in the performance levels that they deliver.

Model Control Language

In this approach a subset of C language is used to direct a Bus Interface Model (a limited
model of a CPU capable of translating processor states into I/O events on the physical
pins) to execute one or more bus cycles. The directives expressed in C subset are
translated into a series of events emitted by the Bus Interface Model over time. While the
language subset allows conditional statements and loops, it is not an efficient vehicle for
describing any high level processor behaviors.

The commercial implementation of this technique also suffers from lack of real-time bi-
directional relationship with the simulation session. That is, the program is typically
translated into some proprietary data file which is subsequently loaded into simulation.
The program is incapable of responding to transactions that originate from outside the
processor, making this technique suitable strictly for generation of stimulus for the
surrounding hardware.

This approach does not result in measurable performance gains since true execution of
software is not achieved.

Compiled Software Model

A mild improvement on the above method is known as Compiled Software Modeling
(CSM). Instead of C subset, the entire language is supported. Here the embedded
software is compiled for a host other than the intended CPU. As the software executes on
the host the I/O transactions are trapped and selectively translated into bus cycles (as
above) that excite the surrounding hardware. The presence of the Bus Interface Model is
still required.

While this technique allows real-time, bi-directional interactions between hardware and
software to be modeled, numerous problems persist. Since this approach takes advantage
of the host's native compiler, the target processor's assembly language can not be
supported. Transaction trapping frequently requires unwanted modifications to be made
in the embedded software. And finally, a complete lack of timing makes this approach
inappropriate for anything but basic protocol verification and stimulus generation.

The performance of software execution when utilizing this method can be quite
impressive. Gains of 10,000X to 100,000X and beyond are possible depending on the
type of host and complexity of the target.

Instruction Set Model

A more substantial investment in model development leads to a far more profound
improvement in the utility of the co-simulation solution. In Instruction Set Model (ISM)
the processor is described in terms of its instruction set. That is, a collection of
instructions is modeled where each instruction defines a relationship between constructs

that are internal (registers, on-chip memory) or external (on-board memories) to the
processor. Additionally, cycle level timing estimates are included. The accuracy of these
estimates is directly proportional to the degree of model detail.

A performance gain of upwards of 10,000X can be achieved making this technique
suitable for full-scale hardware/software interface validation and embedded software
execution.

Hardware Simulation
While event-driven simulation tools have achieved relatively high levels of performance, they all
face the same performance barrier: management of the event queue to service all transitions
introduces a theoretical limitation on overall performance. That is, non-event-driven techniques
must be examined to achieve significant performance gains.

Cycle-based Simulation A method exists that can achieve higher performance rates at the
cost of reduced accuracy. Cycle simulation allows the simulator to abstract away the
timing details for all transactions that do not occur on a cycle boundary. This eliminates a
vast amount of computation and can lead to 10X to 100X performance gains over
traditional simulation.

These tools have not been adopted widely. Cycle simulation puts significant strain on the
design methodology without delivering performance level sufficient for execution of
meaningful amounts of software.

Emulation Another technique that has been widely explored for this application is
Hardware Emulation. In this approach, the design that would ultimately be implemented
as one or more ASICs is mapped onto programmable hardware. The programmable
hardware assumes the personality of the loaded design and realizes its execution at 1MHz
to 10 MHz.

While the execution speed of Hardware Emulation is more than sufficient for embedded
software debug (about 1,000,000X over traditional simulation), introducing companion
elements of pre-existing hardware (such as CPU) can be cumbersome.

Hardware/Software Co-simulation
It is useful to consider the embedded system in terms of the following components:

• Software Dominated Partition (SDP) -- includes a COTS (Commercial Off-The-Shelf)
processor, memory system, and all the software including RTOS (Real Time Operating
System), device drivers, and the embedded application(s).

• Hardware Dominated Partition (HDP) -- includes the original hardware content of the
design usually implemented as one or more ASICs.

The proposed solution allows the user to combine a chosen SDP executor with a suitable HDP
simulation tool/model, while giving him/her the knobs to control performance/detail tradeoffs
during the analysis session.

Figure 4. Hardware and software partitions with corresponding execution options

Most of the methods discussed above are supported in the proposed Hardware/Software Co-
simulation tool. The selection of techniques needed for Software Dominated Partition would be
based on availability and type of software development tools, access to Instruction Set Models,
and validation objectives (interface, code, protocol, etc.) The selection of tools needed for
Hardware Dominated Partition would be based on access to hardware emulation hardware, types
of available simulation tools and validation objectives (ASIC, board, interface).

The figure below summarizes the expected performance levels that would result in different
combinations of the discussed techniques.

Figure 5. Combined performance levels

Managing the Tradeoffs
Accelerating major portions of the simulation environment is a good start, but is not sufficient by itself. Several key
issues need to be considered as well.

Key Issues
Performance The techniques described above all offer different levels of stand-alone
performance. It is, however, the combined performance that is important. For instance, it is
irrelevant how fast the software side of the system executes if the hardware simulation is left
unaccelerated. Even if the processor, memory and embedded code execute infinitely fast, the

overall performance of systems with high original hardware content (greater than 40K gates) can
remain at unaccelerated level. When dealing with performance, it is crucial to address the
acceleration of the entire system rather than that of components.

Accuracy While it is practical to abstract significant amount detail out of the analysis session, a
certain degree of accuracy is important and must be maintained. Most interactions between
hardware and software are sensitive to timing constraints. Without estimation of instruction
timings, it is not possible to truly validate the H/S interface.

Usability It is pivotal to have accurate machine-specific view of the software execution in
addition to the views traditionally provided by the hardware simulation tools. A common debug
environment must offer either hardware simulation view of the system, software debug view of the
system, or both depending on the user needs. Visibility of the processor states and ability to create
composite breakpoints are important elements of effective hybrid system debug environment. One
can easily envision the extension of the usage model to include virtual instrumentation as well as
bridges to other analysis domains.

Model Availability All of the above approaches require some level of processor model. At least a
Bus Interface Model is required for CSM method. An ISM is needed for meaningful H/S Co-
simulation. Neither of these model types is trivial to create, thus it is critical to have access to a
sizable portfolio of CPUs commonly used in embedded system design. Furthermore, performance
of the interface between such models and the rest of the system must highly optimized.

Cross-Domain Optimization Aside from the obvious structural elements required to enable the
co-simulation, number of other components on both SDP and HDP sides need to be modified to
achieve performance sufficient for execution of industrial quantities of embedded software.

Source level access to the portfolio of ISMs is needed in order to achieve the following:

• I/O notifications -- the ISM needs to be able to efficiently notify the other side of co-
simulation about read and write activities detected in executing software.

• Asynchronous write-backs -- the components residing in the Hardware Dominated
Partition must be able to asynchronously modify the memory model being used by an
ISM.

• Non-blocking user interface -- since we want to allow the user to control the session
from both analysis domains, the debugger accompanying the ISMs should not block
while waiting for code execution.

The tools servicing HDP also need to be revised.

• Memory interface -- a view of the memory needs to be provided to the simulation
system that can be modified by the events occurring in the course of simulation. These
modifications must subsequently be synchronized with the view of the memory available
to SDP to ensure memory coherency.

• Emulation interface -- if a hardware emulator is used to accelerate simulation of HDP, a
more efficient interface needs to be added. A mechanism for rapid import/export of
stimulus and results as well as logic for fine-grained simulation control need to be added.

Detail vs. Performance
An obvious area where tradeoffs can be exploited is in varying the degree of detail presented to the user.
When the amount of detail that the simulation tools need to worry about is reduced, the performance will
improve.

Memory Controls As was stated earlier, processor to memory transactions typically consume
most of the simulation cycles. The degree of detail required in simulating these interactions
depends heavily on validation objectives. That is, when the system is first brought up, we want to
accurately simulate the operations that allow the processor to fetch instructions from memory.
When we observe that the processor can successfully fetch 20 - 30 instructions, the need for
detailed and costly simulation of this type of transaction greatly diminishes. The proposed tool
allows the user to turn off the detailed simulation of the instruction fetches and to start servicing
them via much more efficient and rapid methods that do not require simulation.

Frequently, the embedded software encapsulates complex, memory-bound algorithms. These
algorithms require the processor to frequently read and write data values to memory. Under
normal circumstances these I/O transactions are fully simulated at a huge cost. That is, each I/O
transaction results in creation and service of thousands of simulation events. We are paying a high
computational price, but are learning nothing new about our system since all the operations are
inherently the same with the only variants being direction and address. The proposed tool allows
the user to effectively block entire regions of the address space from simulation. That is, when an
I/O transaction affects an address within a blocked space, it is serviced via rapid software-based
mechanisms that do not require simulation.

One of the key validation objectives early in the design cycle is verification of basic interactions
between the ASIC(s) and the control software that is executing on the CPU. Under normal
circumstances, it can take days of simulation just to bring the system to the point where interesting
exchanges between the processor and the ASIC are about to commence. With the proposed
system, the user can block the entire address space from simulation with the exception of memory
mapped addresses that represent pre-defined communication channels between the CPU and the
ASIC under test. This allows the session to progress rapidly by executing software that does not
effect any hardware other than the memory sub-system, until the non-blocked addresses are hit.
When this happens the I/O operations are fully simulated enabling the user to observe detailed
interaction between the processor and the ASIC.

Mechanisms for manipulation of memory access are key in allowing the user to tightly focus the
simulation session on validation objectives that are of greatest interest without incurring
unnecessary computational penalties.

Event Suppression There are other methods that can be employed to further improve the
simulation performance by allowing the user to more precisely correlate validation objectives with
available run-time controls. As was stated earlier, the amount of events produced in the course of
the simulation session is directly related to the consumed computer time.

The designer possesses the knowledge of the system under test and is aware of which part of his
design has significant impact on his current validation objectives. Thus, the ability to easily
exclude parts of the design from costly simulation without impacting the validation objectives is
highly desirable. The proposed system allows easy activation and de-activation of design
components and sub-systems.

Furthermore, this level of control over the simulation activity can be extended to individual
signals. Clocks, for example, are highly active signals that may be deactivated for extended
periods of time without any adverse effect on given validation objectives. The proposed system
supports a variety of event suppression mechanisms giving the user ever greater control over detail
vs. performance tradeoffs.

Summary
Trends in the embedded systems market are time to market pressures, increasing software content, and increasing
design complexity. These trends are driving designers to consider new ways of validating their systems. Clearly, it is
extremely expensive to fix significant hardware/software integration problems late in a project. Virtual prototyping
offers the promise of finding integration problems earlier in the design cycle. This, in turn, reduces the duration of
the Integration and Test phase.

Figure 6. Impact of virtual integration on embedded system design process

Integration of hardware and software design tools is the enabling technology for virtual prototyping. Our
experiments have shown that a simple integration between a hardware simulator and an instruction set simulation is
inadequate in terms of software simulation performance. The proposed system gives the designer the ability to make
intelligent tradeoffs between detail and performance at different times during the design cycle and presents an
opportunity for performing virtual prototyping.

The proposed system contains the infrastructure that allows utilization of different techniques for both hardware and
software simulation. While on the hardware side, the relative merits of cycle-based simulation and hardware
emulation are straightforward to assess, the choice of tools on the software simulation side is less obvious. The table
below compares different techniques with respect to four validation objectives.

ASIC
Stimulus

Protocol
Verification

H/S Interface Verification and
Firmware Debug

System Debug
(RTOS + Apps)

Model Control
Language (MCL)

V

Compiled Software
Model (CSM) V V

Instruction Set Model
(ISM) V V V

ISM + Hardware
Emulator (HE)

V V V V

Table 2. Simulation techniques vs. validation objectives

The system described above has been developed and is now available to embedded systems designers world-wide
(this will be true @ EuroDAC timeframe).

References
1. Bailey B., Klein R., Leef S., Hardware/Software Cosimulation Strategies for the Future. Publication

pending.
2. Klein R., An Industrial Hardware/Software Cosimulation Solution. Publication pending.

